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A model devised by Thorpe & Li (J. Fluid Mech., vol. 758, 2014, pp. 94–120) that
predicts the conditions in which stationary turbulent hydraulic jumps can occur in the
flow of a continuously stratified layer over a horizontal rigid bottom is applied to,
and its results compared with, observations made at several locations in the ocean.
The model identifies two positions in the Samoan Passage at which hydraulic jumps
should occur and where changes in the structure of the flow are indeed observed.
The model predicts the amplitude of changes and the observed mode 2 form of the
transitions. The predicted dissipation of turbulent kinetic energy is also consistent with
observations. One location provides a particularly well-defined example of a persistent
hydraulic jump. It takes the form of a 390 m thick and 3.7 km long mixing layer with
frequent density inversions separated from the seabed by some 200 m of relatively
rapidly moving dense water, thus revealing the previously unknown structure of an
internal hydraulic jump in the deep ocean. Predictions in the Red Sea Outflow in the
Gulf of Aden are relatively uncertain. Available data, and the model predictions, do
not provide strong support for the existence of hydraulic jumps. In the Mediterranean
Outflow, however, both model and data indicate the presence of a hydraulic jump.

Key words: hydraulic control, stratified flows, turbulent flows

1. Introduction

Little is known of the form and structure of hydraulic jumps in the deep ocean,
and until recently measurements in and around features that satisfy the dynamical
conditions necessary for hydraulic transitions to occur have been lacking. The potential
importance of hydraulic jumps as a mechanism for mixing in stratified near-bed
currents is, however, recognized, and several studies have been made of the flow
in regions where jumps might be expected, notably in the Romanche Fracture Zone
(Polzin et al. 1996) and in the near-bottom outflows from both the Red Sea (Peters &
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Johns 2005; Peters et al. 2005) and the Mediterranean Sea (Gasser et al. 2011; Nash
et al. 2012). Alford et al. (2013) conclude that hydraulic jumps form downstream
of a sill in the Samoan Passage, resulting in turbulent mixing. In the atmosphere,
transitions in pressure, wind speed and potential temperature described as being
caused by hydraulic jumps have been observed, for example, in the lee of the Sierra
Nevada mountain range in California by Armi & Mayr (2011) and in katabatic winds
in Adélie Land in Antarctica by Pettré & André (1991), the latter a manifestation of
‘Loewe’s phenomenon’ (Baines 1995).

Our purpose here is to apply an idealized model in some of these regions where
detailed measurements of near-bottom flows are available and jumps appear likely.
The theoretical model predicts when flows are prone to hydraulic jumps and, if they
are, the amplitude of jumps and what loss of energy occurs. The comparison with
observations provides tests of the validity of the model and, within the limits of the
model and its ‘fit’ to the data, examination of whether hydraulic jumps occur in
observed flows and some indication of their nature.

The model is described in § 2, and applied to data in the following sections.
Section 3 makes comparison with observations over and in the lee of a sill in the
Samoan Passage. Two abrupt changes in the character of the flow are examined in
detail and are identified as hydraulic jumps. In § 4 the model predictions are applied
to observations in the Red Sea Outflow, whilst § 5 describes comparison of the model
with observations in the Mediterranean Outflow. The main conclusions are discussed
in § 6 and summarized in § 7.

2. The model

A theoretical model of a stationary turbulent internal hydraulic jump in a
non-rotating system was devised by Thorpe & Li (2014, hereafter TL) and is
illustrated in figure 1. A stratified layer in which the jump occurs flows over a
rigid horizontal boundary at z = 0 and beneath a uniform stationary fluid of infinite
depth. Unlike the majority of models of such jumps, which assume that the flow
consists of two discrete uniform layers upstream of the hydraulic transition (reviewed,
for example, by Baines (2016) and Ogden & Helfich (2016)), TL adopt continuous
profiles of velocity and density both upstream and downstream of the transition. The
velocities in the model are given by

ui(z) = UiFi(z/hi), (2.1)

where i=1 indicates a steady flow approaching a jump (‘upstream’) and i=2 indicates
a steady flow beyond the jump (‘downstream’) when turbulence generated within the
region of the transition has collapsed, and hi is the thickness of the flowing layers.
The (positive) functions Fi are selected as ‘η profiles’; for a given value ηi and with
y = z/hi,

Fi(y) =











1, if 0 6 y 6 ηi 6 1 (a uniform lower layer),
(1 − y)/(1 − ηi), if ηi 6 y 6 1 (an interfacial layer),
0, if y > 1 (a uniform and stationary upper layer).

(2.2)

The η profiles provide examples of flows ranging from a uniform gradient extending
from z = 0 to z = hi when ηi = 0 to a two-layer structure with discontinuity at z = hi

when ηi = 1.
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Density Velocity DensityVelocity

Upstream Transition region Downstream

Density Velocity DensityVelocity

Upstream Transition region Downstream

(a)

(b)

FIGURE 1. Sketches showing the model representation of a turbulent hydraulic jump or
transition in a stratified shear flow over a plane boundary at z = 0: (a) a mode 1 transition
and (b) a transition of mode 2. Here Q and Q1 represent the fluxes of volume of density
ρ0(1−∆) from above and of density ρ0(1+∆) from below into the transition zone. (From
Thorpe & Li (2014); their figure 1.)

The density is chosen with a profile similar to the velocity:

ρi(z) = ρ0[1 − ∆ + 2∆Fi(z/hi)]. (2.3)

The reference density, ρ0, and the measure of density variation, ∆ (and the velocity
measures, Ui), are all positive. The density at the boundary, z = 0, is ρ0(1 + ∆) in the
upstream flow and also in the downstream flow. (This requirement of equal densities
at z = 0 can be relaxed to allow mixing in the transition to extend through the lower
layer down to the seabed, so reducing the density in the downstream flow at z = 0 and
introducing a measure, δ, of the density change, as described by Thorpe (2010) and
TL.) The density gradients, dρi/dz, are zero except in the interfacial layer, where they
equal −2∆ρ0/[hi(1−ηi)]. Above z=hi the density is equal to ρ0(1−∆) and, since the
density is uniform, no internal waves can propagate upwards from the transition region
(but see appendix C). It is assumed that the transition is not undular; no allowance is
made for mixing and energy loss in a train of stationary waves downstream of a jump.
The downstream profiles defined by U2, h2 and η2 depend on the turbulent mixing in
the jump but are made to be consistent with their upstream values, U1, h1 and η1,
according to the laws of conservation of volume, mass and momentum fluxes.
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The η profiles at locations upstream and downstream of perceived hydraulic jumps
are fitted to the data as explained in appendix A to obtain values of ηi, Ui, hi and
2∆ρ0. The gradient Richardson number in the interfacial layer (ηihi < z < hi) is

Rii = 2g∆hi(1 − ηi)/U2
i . (2.4)

Closure is obtained by assuming that the downstream interfacial Richardson number,
Ri2, equals 1/3. This value is chosen because by the Miles–Howard theorem it
ensures that the downstream flow is stable. Furthermore, it is well within the bounds
of uncertainty of the final values, RiF, of Richardson numbers in laboratory and
numerical studies of decaying turbulence following Kelvin–Helmholtz instability (KHI)
in a stratified interfacial layer (e.g. Thorpe 1973; Smyth, Moum & Caldwell 2001). It
should, however, be noted that whether there is a similar limiting Richardson number
following the collapse of turbulence initiated in a hydraulic jump is not known,
although a value of approximately 1/3 is indeed found downstream of the jumps
analysed in § 3. The upstream flow is characterized by η1 and a Froude number, Fr,
defined as

Fr = U2
1/(g∆h1) = 2(1 − η1)/Ri1. (2.5)

Figure 2 summarizes the analysis of three factors important in internal hydraulic
jumps: wave propagation, consistency with the conservation laws, and the stability of
the upstream and downstream flows. It shows the character of flows satisfying the
conservation laws and the possibility of transitions at points in the (η1, Fr) plane
defining the upstream flow. A necessary condition for a steady stationary jump is that
no waves can propagate upstream to alter the flow in which the jump occurs. The
bold lines of figure 2(a,b) are derived by Thorpe (2010, see his § 4.2) and indicate
limiting values for this condition to apply. They mark the maximum value of Fr for
given η1 at which waves can propagate in the upstream direction; at greater values
of Fr (when jumps can be stationary) there are no upstream-travelling waves. When
η1 < 2/3, the limiting Froude number equals 8(1 −η1) and (2.5) implies that Ri1 = 1/4.
(The condition Ri1 = 1/4 is satisfied on the dashed line and on its continuation to
Fr = 8 at η1 = 0 in figure 2a,b.) Figure 2(b), found following TL, also shows where
finite-amplitude jumps consistent with the conservation laws may be possible in given
upstream flows, i.e. at points in the (η1, Fr) plane. To the right of the bold line
marking the limiting Fr, the plane is divided into three regions, A, B and C. No jumps
are possible in region A. Just one solution of the conservation equations for a flow
downstream of a jump is possible in region C (meaning that only one type of jump or
mode of transition can occur). Two solutions exist in region B; one of two jumps are
possible but only when η1 exceeds 0.74 and Fr is sufficiently large. Jumps occur in the
regions B and C where the upstream flow with corresponding η1 and Fr is described
as ‘supercritical’ to the formation of hydraulic jumps. Jumps are not supported in the
remaining regions of the (Fr, η1) plane; these flows are ‘subcritical’. The smallest Fr
at which a jump can occur is 2.2 when η1 = 0.74, at the junction of regions B and
C and the bold line. The single roots in region C generally correspond to mode 2
jumps (figure 1b) in which the interfacial layer in the upstream flow, η1h1 < z < h1,
expands both upwards and downwards; values of h2 exceed h1 but η1h1 > η2h2, so
that the upper isopycnals rise and the lower descend. The double roots of region B
are either of mode 2 jumps or those of mode 1, in which all isopycnals rise through
the transition as illustrated in figure 1(a).

The stability of the upstream flow was examined by TL (their § 2.2) and is
summarized in figure 2(c). The hatched region shows where KHI is not possible in
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FIGURE 2. A summary of the stability of a flow and hydraulic jumps in the (η1, Fr)
plane. (a) Internal waves can propagate upstream in the hatched region, and consequently
no stationary hydraulic jumps are formed here. One has Ri = 1/4 on the line joining (η1 =
0, Fr = 8) to (η1 = 1, Fr = 0), with smaller values of Ri to its right. (b) The region
Ri < 1/4 is divided as follows: A, in which no jumps may occur; B, in which jumps
of modes 1 and 2 are possible; and C, in which only one jump, generally of mode 2,
is possible. Flows in B and C are supercritical and the remaining area of the (η1, Fr)
plane is subcritical. In D, Ri < 1/4 and the flow is unstable to KHI but, because waves
can propagate upstream (as shown in panel (a)), no stationary jumps can occur. (c) The
hatched region is where the flow is stable to KHI. Its boundary (thick line) is the stability
boundary separating stable flow (to the left) from unstable flow (to the right). One has
Ri < 1/4 in the stable region E at small η1 to the right of the stability boundary where
(as shown in panel (b)) hydraulic jumps may occur. The dot-dashed line corresponds to
Ri = 1/3.
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the upstream flow, i.e. where the Taylor–Goldstein equation describing the stability
of small perturbations to the flow has no exponentially growing solutions. KHI may
occur in the remaining region of the (η1, Fr) plane. A value Ri1 = 1/3 corresponds
to the dot-dashed line, Fr = 6(1 − η1). Points on this line are to the left of, and
outside, the supercritical regions B and C of figure 2(b) in which hydraulic jumps are
possible: it follows that a steady downstream flow with Richardson number Ri2 = 1/3
is therefore stable both to KHI and to a possible hydraulic transition whatever the
value η2. To be consistent with the model’s assumption that Ri2 = 1/3, a measured
downstream Froude number should lie on (or at least be close to) the dotted line
and be approximately equal to 6(1 − η2). Although, by comparing figure 2(b,c), it is
evident that KHI is possible where jumps may occur in all of region B and most of C,
there is a small region marked E in figure 2(c), part of C, where jumps are possible
but KHI is not. (The flow with small values of η1 is stabilized by the presence of the
rigid boundary at z = 0, reducing the critical Richardson number to values below 1/4.)
The possibility of KHI where jumps occur in regions B and C implies that (unless
the flow is in the region E) it might be difficult, if not impossible, when comparing
model predictions to observations to distinguish between hydraulic transitions and
those caused by KHI; the occurrence of turbulence and an associated change in flow
profiles may be a consequence of a hydraulic transition or of KHI, and in this sense
the two are synonymous. (It will, however, be shown in § 3 that in at least two cases
the nature of the hydraulic transition is quite distinct from KHI.) In regions A and D
of figure 2(b), the upstream flow is liable to KHI but not to a hydraulic jump, in D
because upstream waves are possible (figure 2a) and in A because no hydraulic jump
solutions can be found; for flows in region A, small-amplitude KHI disturbances may
grow, but no finite-amplitude hydraulic transition is possible.

There is one factor that may distinguish hydraulic jumps from KHI. Where they
occur, the turbulent hydraulic jumps are stationary, their position fixed where the
flow becomes supercritical, e.g. downstream of sills or constrictions in the width of
channels. The conditions favouring the onset of KHI may similarly be determined
by the topography, e.g. by its enhancement of shear. It is, however, a property
of KHI that the disturbances following instability and developing into billows and
subsequently turbulence propagate downstream at a speed within the range of the flow
speeds, i.e. so that a critical level exists. The billows propagate at a speed between
that of the upper layer (zero in the model) and that of the lower layer, U1, possibly
causing the critical position from which they develop, i.e. where the flow becomes
subject to KHI (and possibly supercritical), to pulsate slightly in its downstream
location.

As explained further in § 3 (and shown later in figure 6), the TL model provides
prediction of other quantities related to transitions. The theory does not establish,
however, the physical processes leading to the onset of turbulence in the transition.
These might include an overturning billow-like structure or rotor (Ogden & Helfich
2016; e.g. their figure 4d of an internal bore) or KHI. Nor does the theoretical
model describe the nature of the flow within the turbulent transition (although it has
been supposed to have a character sufficiently far downstream where turbulence has
collapsed similar to that following KHI, with Ri2 = 1/3). Much about its structure
is, however, revealed by observations described in § 3. The model does not predict
the values of η or Fr within the turbulent transition region itself, but these are
determined from the observations. Some information is, however, available from the
model about the mean rate of dissipation of turbulent kinetic energy as explained
later, and estimates may be made of the vertical fluxes within the transition (Thorpe
2010).
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FIGURE 3. Contours of potential temperature (◦C) and stippled regions in which the rate
of dissipation of turbulent kinetic energy per unit mass computed using Thorpe scales
exceeds 10−7 W kg−1 in a section through the Samoan Passage made while steaming at
low speed in tow-yo mode (from Alford et al. (2013), figure 3c). The bottom topography
is shown in black. The two sections, 19–25 km and 3–12 km (i.e. x = 19–25 and 3–12),
selected for analysis in §§ 3.2 and 3.3, respectively, are marked on the horizontal distance
axis.

Observations are used in §§ 3–5 to examine the predictions (and test the validity)
of the theoretical model. Assumptions and approximations made in applying the
theoretical model to observations are reviewed in appendix B. One of these is that,
rather than the uniform density of the η profiles, the observed density profiles may
have a nearly constant gradient above the flowing layer near the seabed (e.g. as seen
later in profiles in figure 4a). It is shown in appendix C that this appears unlikely
to allow upward radiation of internal waves with energy and momentum loss from a
transition region.

3. The Samoan Passage

3.1. The observations

Alford et al. (2013) examined the dense deep northerly flow through the Samoan
Passage. They made detailed ‘tow-yo’ measurements with a conductivity–temperature–
depth (CTD) probe and a lowered acoustic Doppler current profiler (LADCP) to obtain
profiles of potential density (sigma4, referenced to 4000 m) and velocity in a region
of mean depth of approximately 5100 m. The ‘tow-yo’ cycled between 40 m off the
bottom and 4200 m depth, making profiles with a derived 1 m vertical resolution
approximately 250 m apart, and thus inclined at a mean angle to the horizontal of
approximately 74◦. Potential temperature and dissipation data over a major sill near
8◦ S are displayed in figure 3(c) in Alford et al.’s paper and are reproduced here
in figure 3. Being at low latitude, the effects of the Earth’s rotation are likely to
be relatively small. This section shows locations designated by their position, x (in
kilometres), from 0 to 31.5. It passes in a northerly direction from just upstream
(south) of the sill. Adjacent to the seabed an approximately 250 m thick layer of
relatively dense water flows northwards at ∼ 0.4 m s−1. It is capped by an interfacial
layer in which the velocity and potential density decrease upwards. Above this, the
flow is relatively small. The analysis made here is of two subsections of the data
where hydraulic transitions appear likely. Section 3.2 describes x = 19 to 25, presented
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FIGURE 4. Profiles of (a) Σ , the potential density, measured in kg m−3, minus
1045.9 kg m−3, and (b) northward velocity, u, in m s−1, in the Samoan Passage at roughly
1 km intervals from approximately x = 19 to x = 25. (The actual positions, the mean
locations of the two-yo profiles, are x=19.1, 20.1, 21, 22, 23.1, 24.1 and 25.2.) Successive
profiles are displaced to the right by (a) 0.2 kg m−3 and (b) 0.15 m s−1. The water depth
is indicated by horizontal bars beneath each profile. The position of u = 0 for each profile
is marked at the top of (b) by vertical arrows. The features marked A to D in (a) are
discussed in the text.

first because (as it appears from figure 3) it is found to contain a single ‘cleanly
defined’ hydraulic jump and consequently sets a standard for later analysis. Section 3.3
is from x = 3 to 12 where a jump may also occur.

Additional measurements in the Samoan Passage are described by Voet et al. (2015,
2016).

3.2. The tow-yo section from 19 to 25 km

Profiles of potential density and northwards velocity at 1 km spacing in the section
of increasing depths from x = 19 to x = 25 are shown in figures 4(a) and 4(b),
respectively. Table 1 shows the results of fitting the η profiles to these data as
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FIGURE 5. Values of η and Fr at numbered kilometre locations in the Samoan Passage
(a) x = 19–25 and (b) x = 3–12. Points to the right of the bold line are supercritical, those
to the left subcritical. The uncertainties in observed values of η and Fr are shown by error
bars. The dot-dashed line corresponds to an interfacial gradient Richardson number of 1/3.

Location Depth h η Ri Fr Super/sub-
x (km) (m) (m) critical

19 5022 537 0.64 ± 0.04 0.35 2.1 ± 0.2 Sub
20 5006 426 0.64 ± 0.03 0.15 4.7 ± 0.5 Super
21 5038 383 0.57 ± 0.03 0.11 8.0 ± 0.8 Super
22 5092 432–617 0.44 ± 0.04 0.17 ± 0.13 6.7 ± 2.5 Uncertain
23 5140 520 ± 45 0.54 ± 0.03 0.11 ± 0.10 8.7 ± 2.4 Super
24 5076 561 0.33 ± 0.02 0.33 4.1 ± 0.4 Sub
25 5111 521 0.31 ± 0.02 0.24 5.7 ± 0.6 Uncertain

TABLE 1. Values derived from fitting η profiles to data at locations of x = 19 to 25 in
the Samoan Passage. The possible errors in the estimates of η and Fr (and of h and Ri
at x = 22 and 23) are indicated by ‘±’ or a range of values. Locations where the range
of possible values crosses the subcritical–supercritical boundary are labelled ‘uncertain’.

described in appendix A. Here η (with no subscript) is derived from the best fit of
an η profile to the observations at a position, x. The mean thickness, ηh, of the lower
layer is 256 m and its mean northward speed is 0.43 m s−1. The mean thickness of
the interfacial layer is 274 m. With the estimated values of Fr and η, figure 2 (with
η1 = η) is used to determine whether or not the flow at various positions, x, can
support a hydraulic jump. Points in the (Fr, η) plane denoted by their position, x, are
shown in figure 5(a), which is divided as in figure 2. At x = 19, the Froude number,
Fr = 2.1 and η = 0.64, and (from figure 2b) the flow is subcritical (i.e. no hydraulic
jump is possible). At x = 20, Fr = 4.7 and η = 0.64 and, as shown by the location
of the point in figure 5(a), according to the model the flow is supercritical with
(figure 2b) a single solution for the downstream flow. The density profile contains
few regions of static instability and there is a relatively low dissipation rate (figure 3).

Figure 6 (reproduced from TL’s figure 5) shows contours of various downstream
quantities derived from the model corresponding to upstream values, η1 and Fr.
The predicted downstream values (at a location where Ri ∼ 1/3) that correspond to
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FIGURE 6. The model’s predictions of (a) the downstream profile parameter, η2, (b) the
ratio of flowing layer thickness, q = h2/h1, and (c) the non-dimensional energy loss, En,
in the (η1, Fr) plane. Values of (upstream) η1 and Fr are indicated at labelled locations,
x = 4.8 and 20 in the Samoan Passage where, according to the model, the flow becomes
supercritical.

upstream values η1 and Fr at x = 20 are η2 = 0.47 (figure 6a) and q = h2/h1 = 1.29
(figure 6b). The latter has q > 1 and implies that the thickness of the overall flowing
layer at the downstream location should exceed that upstream or, since at x = 20 the
layer thickness is h1 = 426 m (table 1), the predicted downstream value is h2 = 549 m.
Moreover, the predicted downstream thickness of the lower layer, η2h2, is 258 m, i.e.
the thickness of the uniform layer below the interfacial layer should be less than that
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upstream, η1h1 = 271 m. Since the upper edge of the interfacial layer is predicted
to increase in height above the bottom and the lower edge to decrease, a mode 2
transition from upstream to downstream of the transition is expected as noted in
§ 2. But, to comply with the model, does the flow attain an approximately steady
subcritical state with Ri2 ≈ 1/3 at some x > 20?

Although there is a well-defined shear and density interface between 4670 and
4790 m depth at x = 21, above it the density profile has a large region of static
instability with variable shear at depths of 4530–4700 m, marked ‘A’ in figure 4(a),
and this x location (the parameters of the interfacial region also implying in figure 5(a)
that the flow is supercritical) is presumably within a hydraulic jump downstream of
x = 20 following its supercritical state. At x = 22 there is a near-uniform layer
from 4520 to 4750 m, marked ‘B’ in figure 4(a), containing a 60 m high region
of static instability. At x = 23, there is what appears to be an 80 m deep layer of
residual overturn, marked ‘C’, near 4650 m. Evidence of this mixing region persists
at x = 24, marked ‘D’. The presence of the inversions (statically unstable regions) is
reflected by the large uncertainty in Fr shown in table 1 and figure 5(a) at x = 22
and 23, and consequently the sub- or supercritical state of the flow is not definitely
known at x = 22, although the latter is favoured. However, at x = 24 the flow becomes
subcritical (although the interfaces in both density and velocity are somewhat irregular,
possibly layered) with Ri = 0.33 (≈ 1/3) and a Froude number that approaches the
dot-dashed line in figure 2(c), reproduced in figure 5(a), as required in the model
flow downstream of KHI.

The features of the jump described in the last paragraph are illustrated in more
detail in the potential density contours of figure 7. The mixing region is outlined
by an oval-shaped curve to indicate its location and approximate dimensions. It is
characterized by relatively uniform density but with frequent inversions. It begins near
x = 20, the position where the flow is first predicted to be supercritical. The mixing
region appears initially near 4600 m depth, approximately 410 m off the bottom,
splitting into two the upstream stratified interfacial layer between 4530 and 4650 m.
The potential density of the fluid where the mixed layer first appears is slightly less
than the mean potential density in this interfacial layer. At x = 22 the layer develops
into a vertically near-uniform region containing frequent density inversions extending
from 4480 to 4770 m depth. At x = 23, the centre of the mixing region is at 4650 m,
approximately 485 m off the bottom. The density of the oval-shaped mixing region
increases with x as more dense water is entrained from the bottom layer. Overall
the layer of mixing resembles a mid-water (i.e. separated by approximately 200 m
from the bottom) 3.7 km long rotor-like structure following the gradual bottom slope,
although no significant sustained flow in the upstream direction was recorded that
might confirm the circulatory flow of a rotor. At its maximum the mixing layer is
approximately 390 m in height, and its aspect ratio – height divided by length – is
approximately 0.08. The velocity field is more uncertain and less firmly structured
than the density, but the oval layer appears to have a generally weak flow above its
stratified base below which the near-bed northerly flow continues at approximately
0.4 m s−1. The mixing layer forming the hydraulic jump has a form reminiscent
of a steady spilling surface-wave breaker (e.g. Rapp & Melville (1990)), like that
downstream of a weir led by a ‘toe’ near x = 20, z = 4600 m. There is no evidence
that it is initiated by an overturn caused by convective instability (as in a plunging
surface-wave breaker) or by KH billows, characterized, for example, by ‘braids’,
high-gradient regions between periodic billows, although the uniformity of the layer
is sustained by static instability and convection. Its form is similar to that produced
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FIGURE 7. Contours of potential density at intervals of 5 × 10−3 kg m−3 between x =
19.1 and x = 24.1 and depths ranging from 4400 to 4900 m in the Samoan Passage. The
mean horizontal locations of vertical profiles made by the tow-yo are indicated by dots
on the x-axis. The flow becomes supercritical at x ≈ 20. The approximate position of the
mixing region associated with the hydraulic jump is indicated by the oval-shaped curve.
The step-like structure of the unsmoothed contours sloping downwards from x = 19.1, z =
4680 m is probably unreal, a consequence of interpolation by the computer package used
to construct the contours as a narrow density interface moves downwards as x increases.

by breaking forced internal waves in the atmosphere above mountain ridges, modelled
by Afanasyev & Peltier (1998, see especially their figure 12d) and by Yakovenko,
Thomas & Castro (2011).

The values of η and h at x = 24 are 0.33 and 561 m, respectively, compared to
the model’s predicted values of 0.47 and 549 m, respectively, for a jump produced
by the flow at x = 20. The lower layer thickness at x = 24 is 186 m, less than the
predicted 258 m, but at least showing that the transition is of mode 2, as predicted.
In view of the assumptions made in the theoretical model, of the uncertainty in fitting
the η profiles to data (reflected in the error bars of figure 5a), of whether the profiles
at x = 20 represent the flow conditions immediately before the transition, and of the
unaccounted-for variations in bottom topography shown in figure 3 over the horizontal
extent of the transition layer shown in figure 7, it is not surprising that the predicted
values differ somewhat from the observed. The density within the interfacial layer is
irregular and ‘step-like’ at x = 25 (figure 4a). At this location, however, the northward
velocity of the flow above the interfacial layer is approximately 0.1 m s−1, violating
the model’s assumption of zero flow.
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Contours of a non-dimensional energy loss in the jump, En, in (Fr, η1) space,
estimated by TL (their equation (4.3)), are given by figure 6(c). The value of En is
related to the mean rate of dissipation of turbulent kinetic energy per unit mass in
the hydraulic jump, ε, by

ε = EnU3
1(1 + 3η1)/{4Lj[(1 − η1) + q(1 − η2)]}, (3.1)

where Lj is the horizontal extent of the transition region associated with the hydraulic
jump, q = h2/h1, and U1 (≈ 0.43 m s−1) is the speed of the lower layer upstream
of the jump. Using the upstream values of η1 and Fr at x = 20, figure 6(c) gives
En ≈ 0.035. Selecting the downstream value of η2 as that at x = 24, and choosing
Lj = 4 km (the separation distance between the upstream and downstream locations)
gives a mean value, ε = 4.1 × 10−7 W kg−1. This is comparable to the values observed
and given in Alford et al.’s figures 2 and 3(c), the latter reproduced here in figure 3.
A further comparison of theory and data is made in appendix D: the approximate time
required for turbulence to collapse is consistent with the observations of the length of
the active mixing region estimated to be approximately 6U1N−1, where N is the mean
buoyancy frequency of the stratified region surrounding the upstream interfacial layer.

In summary, a transition begins at x = 20, the location where, according to the
model, the flow becomes supercritical, and it takes the form of an elongated mixing
layer. If this is a rotor, it is similar to those found in numerical studies of moving
bores by Ogden & Helfich (2016). It is separated from the seabed by a relatively
strong downslope bottom flow, and thus differs from the near-boundary rotors found in
large internal waves in the lee of mountains described by Scorer (1955, 1972, e.g. his
1972 figure 5.7i) and Doyle & Durran (2007). No KH billows or braids are apparent
in the tow-yo profiles immediately downstream of x = 20.

3.3. The tow-yo section from 3 to 12 km

Table 2 and figure 5(b) show the results of fitting the η profiles to data in 36 x6 12.
The mean thicknesses, the averages of ηh and h of the other flowing layers between
x = 3 and x = 12, are 283 and 484 m, respectively, and the mean northward speed of
the dense lower layer is 0.30 m s−1. However, at x = 7, the flow is unusually small,
less than 0.05 m s−1, throughout the depth range sampled by the tow-yo. Although
the density profile was ‘normal’, with a well-defined interfacial layer between depths
of approximately 4300 and 4700 m, no northward-going lower layer appears in the
velocity profile. We have no simple explanation for this and it was not possible to fit
consistent η profiles to both velocity and density.

According to the model the flow becomes supercritical at x = 4.8, returning to
subcritical at x = 5.8. As shown in the contours of potential density in figure 8 a
100 m high structure with numerous density inversions outlined by the oval-shaped
curve appears in the flow at x = 4.8. Its density is approximately equal to the mean
of that in the upstream interfacial layer and it divides this layer into two. This mixing
region extends approximately 1 km downstream, ending at x ≈ 5.8, the location at
which the flow returns to a subcritical state. The aspect ratio of the mixing region is
approximately 0.1 compared with 0.08 for the transition at x = 20 shown in figure 7.
Its length as predicted in appendix D is 6U1N−1 ≈ 1.5 km rather than the 1 km
observed. Other mixing layers appear beyond x = 5.8, e.g. near x = 6.1, z = 4680 m,
where, according to the model, the flow is subcritical but downstream of substantial
increases in water depth.
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Location Depth h η Ri Fr Super/sub-
(km) (m) (m) critical

3 4776 458 0.85 ± 0.04 0.30 0.98 ± 0.1 Sub
4 4706 344 0.75 ± 0.04 0.31 1.6 ± 0.2 Sub
4.2 4706 291 0.74 ± 0.04 0.31 1.7 ± 0.2 Sub
4.5 4753 338 0.72 ± 0.04 0.32 1.8 ± 0.2 Sub
4.8 4756 356 0.65 ± 0.04 0.22 3.3 ± 0.2 Super
5.1 4803 378 0.60 ± 0.05 0.24 3.3 ± 0.5 Uncertain
5.4 4805 355 0.58 ± 0.04 0.18 4.6 ± 0.2 Super
5.8 4889 409 0.53 ± 0.05 0.48 1.9 ± 0.2 Sub
6.1 4888 538 0.35 ± 0.1 1.0 1.3 ± 0.07 Sub
7 4952 ∗

8 4936 596 0.43 ± 0.09 1.5 0.78 ± 0.33 Sub
9 4856 431 0.75 ± 0.03 0.20 2.2 ± 0.05 Uncertain
10 4904 454 0.59 ± 0.03 0.39 2.1 ± 0.2 Sub
11 4920 470 0.57 ± 0.03 0.33 2.5 ± 0.04 Sub
12 4952 562 0.57 ± 0.04 0.45 1.9 ± 0.2 Sub

TABLE 2. Values derived from fitting η profiles to data at locations of x = 3 to 12 in the
Samoan Passage. The uncertainty in the estimates of η and Fr are indicated by ‘±’. At
x = 7 (marked ∗), the flow is small, less than 0.1 m s−1, perhaps being blocked, and it
was not possible to fit consistent η profiles to both velocity and density. At x = 9 the flow
is marginal (i.e. on or very close to the supercritical–subcritical boundary in figure 4b)
although unstable to KHI.

Using the values of η and Fr at x = 4.8 as those upstream of a transition, figure 6(a)
predicts η2 ≈ 0.57 downstream. This compares fairly well with the observed value,
0.53, at the subcritical downstream end of the mixed structure at x = 5.8. The
Richardson number at x = 5.8 is, however, 0.48, indicating a stable flow, but greater
than the value, Ri2 = 0.33, adopted in the model. The value of En determined from
figure 6(c) at x = 4.8 is approximately 0.018. The mean value of ε in the 1 km
between x = 4.8 and 5.8 derived using (3.1) is approximately 1.0 × 10−6 W kg−1, in
order-of-magnitude accord with the values shown in figure 3. Although smaller than
the feature associated with the hydraulic jump at x = 20, the mixed structure shares
many of its general characteristics, including its being separated from the seabed
by the near-bottom northerly flow of dense water and by an absence of any clear
evidence of KH billows or braids.

4. The Red Sea Outflow

A different Froude number, described as a ‘bulk Froude number’ and denoted here
by FrP, is used by Peters et al. (2005) in the analysis of data from the Red Sea
Outflow in the Gulf of Aden, a near-bottom flow with velocity and density structure
similar to the profiles considered in the Samoan Passage. In terms of the notation
of § 2, Peters et al. define FrP ‘following discussion with Price 2003 (personal
communication)’ by

Fr2
P = (U1/2)2/{g∆[η1h1 + h1(1 − η1)/2]},

= U2
1/[2g∆h1(1 + η1)], (4.1)
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FIGURE 8. Contours of potential density at intervals of 5 × 10−3 kg m−3 through the
hydraulic jump between x = 4 and x = 7 below 4300 m depth in the Samoan Passage.
The mean horizontal locations of vertical profiles made by the tow-yo and the depth of the
seabed are indicated by the dots. Tow-yo profiles extend only to approximately 40 m from
the seabed so no data are available closer to the seabed. The flow becomes supercritical
at x ≈ 4.8. The approximate position of the oval-shaped mixing region associated with the
hydraulic jump is outlined.

or, in terms of Fr given by (2.5) and the local value, η1,

Fr2
P = Fr/[2(1 + η1)]. (4.2)

The critical curves in the (η1, Fr) plane shown in figure 2 are translated to the
(η1, FrP) plane in figure 9. The thick line represents the lowest values of FrP at which,
according to the model described in § 2, a hydraulic transition can occur for given η1;
values of the minimum FrP vary with η1. The smallest FrP at which transition can
occur is 0.80 at η1 = 0.74. The minimum (or critical) FrP is equal to unity only when
η1 = 0.6.

The Red Sea Outflow exits the Red Sea through the Strait of Bab el Mandeb
and passes down two channels in the Gulf of Aden between 12◦ N and 12◦30′ N,
the northern and southern channels denoted by Peters et al. (2005) as NC and SC,
respectively. The outflow, confined to the channels, is conceived by Peters & Johns
(2005) and Peters et al. (2005) in terms of gradually entraining plumes of dense
water rather than gravity currents and in which the spread is dominated by localized
hydraulic jumps. Measurements are made using a package combining an LADCP and
CTD. During the period of stronger flow in observations made in winter, values of FrP

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

64
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
D

 L
ib

ra
ri

es
, o

n 
24

 N
ov

 2
01

7 
at

 1
5:

02
:0

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.



140 S. A. Thorpe and others

C

BA
D

C

BAD

SC

NC

EE

DTS

UTS

0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0

(a)

0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0

(b)

FIGURE 9. The critical curves of figure 2 translated to the (η1, FrP) plane. Regions A–E
correspond to those in figure 2(b,c). The thick line represents the lowest values of FrP at
which a hydraulic transition can occur for given η1. In (a) points are taken from Peters
& Johns (2005) in the two channels, NC and SC, of the Red Sea Outflow. In (b) points
are taken from Gasser et al. (2011) and Nash et al. (2012) at stations UTS and DTS
in the Mediterranean Outflow. The dot-dashed line corresponds to an interfacial gradient
Richardson number of 1/3.

estimated by Peters & Johns (2005) have locally maximum values of approximately
0.93 and 0.97 at down-channel distances in the NC of approximately 70 and 120 km,
respectively, from the Strait of Bab al Mandeb, and 0.88 at approximately 60 km
in the SC. At all three locations, the rate of dissipation of turbulent kinetic energy,
estimated using an assumed proportionality between the Ozmidov and Thorpe length
scales, is also maximal, suggesting the possible presence of hydraulic jumps. At
these locations the value η1, taken here as the ratio of the bottom layer to the total
thickness of the flowing layer (Hb/Hp in the notation of Peters & Johns (2005))
is approximately 0.30 and 0.27 in the NC, and 0.42 in the SC. The corresponding
points in the (FrP, η1) plane are shown in figure 9(a) and indicate that, although the
values of FrP exceed the minimum for hydraulic jumps to occur, the flows should
be subcritical, stable to hydraulic jumps at the estimated η1. Values are, however,
uncertain. Peters & Johns (2005) and Peters et al. (2005) take the depth of the
lower layer (ηh, or Hb in their notation) as the height above the seabed at which the
downstream velocity is a maximum, less than the estimate of η1h determined as in
appendix A. The total thickness of the flowing layer (Hp in their notation) is taken
in a less precise way, depending on the speed or direction of the velocity, or on the
salinity. The value η1 = Hb/Hp is likely to be less than that found in appendix A, and
FrP may consequently be overestimated. There is no clear evidence from observations
or theory of the presence of hydraulic jumps in the Red Sea Outflow. Rather, the
spreading of the outflow down the channels in the Gulf of Aden appears to be
dominated by a more gradual process of turbulent entrainment as concluded by the
two sets of authors.
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5. The Mediterranean Outflow

Gasser et al. (2011) and Nash et al. (2012) report observations using moorings
and tow-yos in the Mediterranean Outflow in the Gulf of Cadiz 70 km west of the
Strait of Gibraltar and to the west of the Espartel Sill, the most western sill of the
Strait. At this location the dense outflow is confined to a westward-flowing layer
of water, some 150 m thick and of relatively high salinity, moving westward over
the seabed at approximately 1.2 m s−1. Profiles of density and velocity are derived
from the surface to the bottom with 1 km horizontal resolution. Flow in the layer
overlying the outflow is of order 0.2 m s−1 to the east. Gasser et al. (2011) show
roughly 10 km long downstream tow-yo sections of salinity, downstream velocity
and gradient Richardson number at four stages of the M2 tidal cycle. Nash et al.

(2012) present a tow-yo section of downstream velocity and log ε at the same time
as that of the low tidal flow section presented by Gasser et al., and focus attention
on two stations in the section, separated by approximately 3.5 km, UTS (upstream
at 6◦19.23′ W, 35◦47.04′ N, where the water depth is approximately 417 m) and DTS
(downstream at 6◦21.00′ W, 35◦46.51′N, in 454 m).

Following Peters et al. (2005), Nash et al. (2012) use the bulk Froude number, FrP,
in their analysis, but assume, without formal justification, that transition occurs at
FrP = 1. At UTS, 90 % of the estimates of FrP lie between 0.70 and 0.92 (with a
mean of 0.81). The mean dissipation, ε, in the outflowing layer is approximately 1 ×

10−6 W kg−1. The value of η estimated from the profiles given by Gasser et al. (2011)
and Nash et al. (2012) is 0.45±0.03. Respective points are shown in figure 9(b). They
indicate that, according to the model, the flow is subcritical and stable to a hydraulic
transition at UTS.

Approximately 1–2 km west of UTS Nash et al. (2012, their figure 3b,c) find
a notable increase in the high-frequency displacement of isopycnals, an increase in
interface thickness and a rise in ε to a mean value of approximately 1 × 10−5 W kg−1

in the outflow, suggesting that a mode 2 transition has occurred. Further downstream
at DTS the mean FrP = 0.99 and 90 % of the estimates of FrP lie between 0.63 and
1.45, 45 % having FrP > 1, and η is equal to 0.39 ± 0.03. As shown in figure 9(b), the
upper values of these estimates of FrP and η imply that a hydraulic jump is possible.
It is likely, however, that conditions for a jump have been reached upstream of DTS
and that DTS lies within the transitional region, this accounting for the relatively
large variations in isopycnal depths and in FrP or Fr. Similarly large variations in
Fr are observed downstream of the hydraulic jump at x = 20–21 in the Samoan
Passage (figure 5a). (Taking the upper values at DTS, FrP ≈ 1.45 and η ≈ 0.4, we
find Fr = 5.85 from (4.2) while figure 6 gives η2 ≈ 0.3, q ≈ 0.8 and En ≈ 0.05.
Taking Lj equal to the distance between the two stations, i.e. 3.5 km, and using (3.1),
gives ε ≈ 1.2 × 10−5 W kg−1, consistent with the observed dissipation rate at DTS.)
Nash et al. (2012) use the Taylor–Goldstein equation to examine the stability of the
flow at DTS to KHI. The gradient Richardson number of the flow near the centre
of the interface above the flowing layer is less than 1/4, and the flow is found to
be unstable to KHI, consistent with the larger values of FrP being in region C of
figure 9(b). Downstream (to the west) of DTS the depth of the seabed increases
sharply to approximately 500 m, resulting in an increase of η to approximately 0.5, a
flow that exhibits 30–50 m overturns and ε exceeding 10−5 W kg−1, again suggestive
of a hydraulic jump.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

64
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
D

 L
ib

ra
ri

es
, o

n 
24

 N
ov

 2
01

7 
at

 1
5:

02
:0

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.



142 S. A. Thorpe and others

6. Discussion

The η profiles defined by (2.2) provide an approximate, if imperfect, description of
the continuous profiles of density and velocity found in near-bottom flows through
the channels of the Samoan Passage and the outflows from the Red Sea and the
Mediterranean. The predictions of the model described in § 2 are used to determine
whether flows observed in these three regions are sub- or supercritical to stationary
hydraulic transitions.

The majority of selected examples, including those in which hydraulic transitions
are suspected in the Red Sea Outflow because of high values of turbulent dissipation
(§ 4), appear to be subcritical within the uncertainty of the estimated η and Fr or FrP.
(High turbulent dissipation may be caused by the stress generated by the rapid flow
over a possibly rough seabed, a factor not accounted for in the model.) Downstream of
two locations in the Samoan Passage (x = 20 and 4.8; figures 5a and 5b, respectively),
the flow appears to have undergone a transition, and the consequent changes appear to
be reasonably in accord with the model’s predictions, including that of the dissipation
of turbulent kinetic energy. The transition is manifest as a downstream-elongated
mid-water actively mixing region. Its form downstream of the position at which flow
becomes supercritical is most clearly seen in the potential density field of figure 7.
A likely hydraulic jump is identified in the Mediterranean Outflow between Nash
et al.’s (2012) stations UTS and DTS (§ 5) but none in the Red Sea Outflow in the
Gulf of Aden, in accord with analysis by Peters & Johns (2005) and Peters et al.
(2005) (§ 4).

Further to the discussion in § 2, it is of note that only in the possibly rare cases
where η is small and Fr large (region E in figure 2c) does the model predict that
internal hydraulic jumps occur but not KHI. One case (at x = 9 in the Samoan Passage,
figure 5b and table 2) is found, however, in which the flow is unstable to KHI but
apparently not liable to a hydraulic transition (i.e. regions A or D in figure 2b).

There is a further possibility not accounted for in the model: that the features
identified from the tow-yo data as hydraulic jumps or KHI are not stationary, but
are propagating downslope as internal roll waves similar to those reported by Fer,
Lemmin & Thorpe (2002). This is, however, unlikely, as later observations in the
Samoan Passage analysed by G. Voet have found very similar jump structures in
the same locations. For example, figure 10 shows the hydraulic jump near x = 20
surveyed about two years after that shown in figure 7. The overall structure outlined
by the oval curve remains generally the same, with comparable height and length
but with an aspect ratio of approximately 0.06. The mixing layer splits the upstream
interfacial layer into two, and the mean density in the layer increases with x, although
less rapidly in figure 10 than in figure 7. The depth of the toe in figure 10 is
approximately 100 m deeper than in figure 7 and it is approximately 500 m further
downstream. Although Yakovenko et al. (2011) draw attention to the long-period
vacillation of lee wave systems and mixing near a topographic feature, there is no
evidence here of such variability, only that the feature persists. The theory of Rottman,
Broutman & Grimshaw (1996) supporting variability finds that it is mainly due to
internal waves that persist near the topography, but occasionally propagate upstream,
a feature excluded in the present hydraulic jump model.

The Earth’s rotation is disregarded in the model. Its effect on the hydraulic jumps
illustrated in figures 7 and 8 may be assessed by the magnitude of a Burger number,
Bu. This is equal to the ratio of the internal Rossby radius of deformation, NH/f ,
divided by the extent of the mixing region, Lj, where N is the mean buoyancy
frequency of the fluid in which the jump occurs, H is the thickness of the mixing

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

64
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
D

 L
ib

ra
ri

es
, o

n 
24

 N
ov

 2
01

7 
at

 1
5:

02
:0

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.



Application of a model of internal hydraulic jumps 143

4900

4850

4800

4750

4700

4650

4600

4550

4500

4450

4400

19.5 20.0 20.5 21.0 21.5 22.0 23.022.5 23.5 24.0 24.5

x, position (km)

z
, 
d
ep

th
 (

m
)

FIGURE 10. Contours of potential density at intervals of 5 × 10−3 kg m−3 through the
hydraulic jump between x = 19.4 and x = 24.7 and in depths ranging from 4400 to 4900 m
in the Samoan Passage obtained approximately two years later than those of the jump
shown in figure 7. The mean horizontal locations of vertical profiles made by the tow-
yo are indicated by dots on the x-axis. The approximate position of the mixing region
associated with the hydraulic jump is indicated by the oval-shaped curve.

layer produced by the jump, and f is the Coriolis frequency, 2.03 × 10−5 s−1, at the
latitude of the Samoan Passage. Estimated values of Bu are 3.1 ± 1.4 and 4.2 ± 0.3 for
the jumps at x = 20 and 4.8, respectively. These values exceed unity and indicate that
here in the Samoan Passage, although not necessarily in the Red Sea or Mediterranean
Outflows, rotation has a relatively unimportant effect in the region downstream of a
transition.

7. Conclusions

Available observations are largely consistent with the predictions of the model
sketched in figure 1 and summarized in figure 2. The prediction of hydraulic
transitions might, however, be refined and more closely tested by selecting a model
with, instead of η profiles, velocity and density profiles that better match those
observed, as in Thorpe (2010). The transition downstream of x = 20 in the Samoan
Passage provides a well-defined example of a hydraulic jump in the deep ocean and
of the consequent changes in density (figure 4). The jump appears to be persistent and
possibly quasi-steady, being found in observations made two years apart (figures 7
and 10). It takes the form of a large, near-uniform, mixing layer that splits the
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upstream interfacial layer overlying the deep dense layer of flowing water. This
mixing region commences at a ‘toe’ (like that of a spilling surface-wave breaker) at
which neither KHI nor convective instability is evident although static and convective
instability are present within the mixed layer itself. The mixed layer produced by the
transition is similar in form to those ascribed to the breaking of internal waves in
the lee of mountain ridges in the atmosphere.

It is likely that a variety of types of hydraulic transitions are possible in stratified
shear flows. A similar ‘nearly stagnant isolating layer’, some 50 m thick and preceded
by flow bifurcation, is observed in the relatively shallow water flow over the sill in
the Knight Inlet, British Columbia (Farmer & Armi 1999; Winters & Armi 2014;
Jagannathan, Winters & Armi 2017). The formation of a near-uniform layer therefore
appears to be a characteristic of at least some internal hydraulic jumps. Gasser et al.
(2011) provide one example of changes in the Mediterranean Outflow downstream of
their station UTS occasioned at one phase of the tidal cycle by the presence of 50 m
high and 1 km long KH billows. Billows have an important role in the atmospheric
jump in the lee of the US Sierra Nevada mountain range (Armi & Mayr 2011). More
detailed observations are desirable to provide further examples of hydraulic jumps that
might allow their classification, particularly where, according to the model, both KHI
and hydraulic jumps are possible as described in § 2.
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Appendix A. Fitting model to data

Data from the Samoan Passage used for analysis are listed profiles of the northward
component of velocity and the potential density referenced to 4000 m at 1 m vertical
intervals obtained by tow-yos. Examples at approximately 1 km horizontal separations
are shown in figure 4. The interfacial layer in the velocity profiles is generally more
clearly defined than that of the density. (The suffixes, i, in ηi etc. are presently
dropped, making no assumptions about whether locations are upstream or downstream
of a jump.) At a chosen location (in km) a line is fitted to the velocity profile
to represent the velocity interface. This intersects zero velocity at a determined
height z = h above the seabed. The mean velocity, U, below the interface generally
shows evidence of a frictional bottom boundary layer but is simply fitted by a line,
U = const., meeting the constant gradient line at z = ηh, so defining a value of η

and the velocity η profile. The velocity gradient is U/[h(1 − η)]. The difference
in densities, 2∆ρ0, at level ηh and at level h is used to find the density gradient
2∆ρ0/[h(1 − η)]. The gradient Richardson number in the interfacial layer (ηh < z < h)

is Ri = 2g∆h(1 − η)/U2, and represents and approximately preserves the minimum
Richardson number of the observed flow. The Froude number of the upstream flow
is Fr = U2/(g∆h) = 2(1 − η)/Ri.

The maximum potential density of the lower layer in this section from the Samoan
Passage (at least at 40 m above the seabed, the lower limit of the tow-yo cycles)
remains fairly constant, showing that the water at this level is not mixed with the
overlying less dense water. (This implies that the parameter δ appearing in TL is
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unity.) The speed of the lower layer, however, changes as a consequence of its
expansion or contraction as it passes downstream.

Values of η and Fr at numbered x locations in Alford et al.’s (2013) data are shown
in tables 2 and 1 and figures 5 and 6.

Appendix B. Assumptions of the theory

The hydraulic jump theory (§ 2 and TL) makes a number of assumptions about
the real flow that are only approximately satisfied. It is assumed in the model that
the velocity upstream and downstream of the stationary hydraulic jump or transition
is uniform in a horizontal direction and depends only on the vertical coordinate, z.
In reality, the seabed generally slopes (in the Samoan Passage, descending from a
depth of approximately 4706 m at x = 4 to 5128 m at x = 25, a mean gradient of
1.15◦, but crossing notable sills at x = 4 and 19 and a trough at x = 7 in addition
to smaller-scale undulations; see figure 3). The real flow is consequently not steady,
as assumed, but tends to accelerate downslope, subject to the balance between the
downslope component of gravity and the bottom and interfacial drag. It will also
respond to changes in channel width and to the tides (although in the Samoan
Passage these are relatively weak, less than 0.05 m s−1). Since at the latitude of
the Samoan Passage, 8◦ S, the inertial period is approximately 86 h and the time
required to complete the tow-yo section of figures 4 or 7 made at 0.25 m s−1 is less
than 6 h, inertial oscillations (which have moderate amplitude, typically less than
0.15 m s−1) will contribute little to the changes that are apparent in this section. The
model’s velocity and density profiles are supposed similar in shape, and the velocity
is zero above the interfacial layer. In reality, changes in the flow occur continually
both inside and outside the transition region. The density and velocity profiles are
similar in that they generally contain an interfacial region of high gradient at the
same depths, but (i) the flow above the shear layer is not precisely zero, although
generally relatively small (an exception being at x = 25 in the Samoan Passage),
and (ii) the potential density in the region above the shear layer is not constant
but generally has a negative (i.e. statically stable) gradient. This may be sufficiently
small to prevent the upward radiation of internal waves (see appendix C). The effects
of stationary (possibly breaking; Yakovenko, Thomas & Castro 2014) lee waves
generated by the flow over the sill are not taken into account and the transition is
not allowed to be undular in form. In the model it is assumed that turbulence in
the hydraulic jump collapses to give a Richardson number of approximately 1/3 as
observed in laboratory and numerical experiments of KHI. The transition occurs over
a level horizontal seabed. In reality, Richardson numbers of approximately 1/3 are
found downstream of possible jumps, e.g. at x = 24 and at 5.8 and 11 in tables 2
and 1, respectively. Further study is required to extend the simple local model to a
broader range of conditions.

Appendix C. Radiation of internal waves

Waves radiating upwards from a hydraulic jump transition region may be forced by
KH billows (and other disturbances forced by turbulence) in the hydraulic transition
region. The fastest growing KHI disturbances in an η profile move downstream at a
speed of approximately U/2 and have a wavelength of approximately seven times the
interface thickness, h(1 − η) (Miles & Howard 1963). Suppose, for generality, that
the hydraulic jump contains perturbations of horizontal scale, λ, moving downstream
at speed c ∼ U/2, and that these generate internal waves in an overlying region of
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buoyancy frequency, N. If the frequency of the internal waves is σ and their horizontal
and vertical wavenumbers are k = 2π/λ and m, respectively, then σ/k = c and

σ 2 = N2k2/(k2 + m2), (C 1)

the dispersion relation, disregarding the effect of the Coriolis force. This gives m =
±k(N2/σ 2 − 1)1/2, which is real if N/σ = N/ck > 1. Waves can radiate upwards from
the turbulent transition region if m is real or are evanescent, decaying exponentially
upwards, if m is imaginary.

With the observed values in the Samoan Passage at x = 3–12 (or 19–25)
of c = U/2 = 0.15 (or 0.21) m s−1, N = 4.62 × 10−4 (or 4.79 × 10−4) s−1

(greatly exceeding the inertial frequency, approximately 2.03 × 10−5 s−1) and with
k = 2π/[7h1(1 − η1)] corresponding to KH billows, we have k = 4.47 × 10−3 (or
3.28 × 10−3) m−1 giving N/ck = 0.69 (0.70). These values are less than 1, so that the
forced waves are evanescent, trapped near the top of the flowing layer. The billow
wavelengths, λ= 7h1(1 − η1)∼ 1.41 (1.92) km, are a substantial fraction of, or exceed,
the approximate length of transitions, 1.0 km (3.9 km) estimated in § 3.3 (§ 3.2). Only
waves with horizontal wavelengths >2πc/N ∼ 2.0 (or 2.8) km may radiate upwards
from the turbulent hydraulic transition, leading to a loss in energy and momentum.
(A study of internal waves in the Samoan Passage by Voet finds that waves appear to
be trapped in the lower layer and do not radiate much energy beyond the interfacial
layer.)

Appendix D. The collapse of turbulence in the hydraulic jump

According to the laboratory experiments of Thorpe (1973), the time for turbulence
to collapse following KHI and to reach a state in which Ri ∼ 0.33 (after which
there is little change in layer thickness) is approximately given by τ = 6U1/g∆.
(The flow may still continue to contain ‘striations’, remnants of turbulent overturns,
beyond a time τ1 = 12U1/g∆. The times for the decay of available potential energy
in the turbulence or of the evolution of the efficiency parameter, Γ , in the numerical
calculations of Smyth et al. (2001) are consistent with a time τ1 rather than the
smaller τ .) Supposing that turbulence is advected downstream at a mean speed U1/2,
the distance downstream from a jump or ‘KHI event’ to where the gradient Ri
becomes equal to 1/3 is approximately τU1/2 = 3.5h1Fr. Using values at x = 20,
the distance downstream before the flow evolves to a mean Richardson number
of approximately 1/3 is therefore approximately 6 km, somewhat greater than the
distance between the observations at x = 20 and 24 or over the horizontal extent of
the transition event shown in figure 7. The larger time, τ1, suggests that remnants
of the turbulence from a transition near x = 20 may be carried to at least 12 km
downstream, and the irregular structure remaining in the observed interface at x = 25
is evidence that this may be so.

An alternative, again approximate, derivation of a collapse time but better
representing that from a statically unstable region, is found from the laboratory study
by Lawrie & Dalziel (2011) of the decay of turbulence when an initially statically
unstable region spreads into stably stratified surroundings with uniform buoyancy
frequency, N. Shear is, however, absent. The decay time is approximately 12N−1.
Taking N ≈ 6.2 × 10−4 s−1 to represent the stratification in the water surrounding the
mixing layer at A–D in figure 4(a) gives a decay time of approximately 2 × 104 s or,
if water is carried at mean speed U1/2 ≈ 0.215 m s−1, a decay distance 6U1N−1, of
4.2 km, which is more consistent with that observed.
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